MENU
Language

[Windows support] Start your local LLM with Ollama! Installation instructions and execution instructions explained

目次

What is Ollama?

Ollama is a tool that allows you to run large language models (LLMs) like ChatGPT in your local environment.
For companies and individuals who value security and privacy, it is attracting attention as an AI chat platform that can be used without an internet connection.

Ollama installation instructions (Windows/macOS/Linux compatible)

Get the installer from the official Ollama website

  • Website: Ollama official website
    URL:https://ollama.com
  • Click “Download” or “Get started” to get the installer.

Performing the installation

  • You can install it by simply starting the installer and following the instructions.
  • No special settings are required, and you can start using it immediately after completion.

Launch Terminal (Command Line)

  • Windows: PowerShell or Command Prompt
  • macOS: Terminal

Specify where to save the model to be used in Ollama
Steps to add OLLAMA_MODELS in Windows (GUI)

The model is automatically downloaded from the internet and stored in the local environment.
The default download directory is:

Download destination path (default)

macOS / Linux

~/.ollama/models

Windows (including WSL2 environment)

%USERPROFILE%\.ollama\models

Example:

C:\Users\<あなたのユーザー名>\.ollama\models

Optional: Specify where to save the model

OLLAMA_MODELS is an environment variable that is enabled by the user explicitly specifying .

If you don’t set this variable, Ollama will use the default save path (~/.ollama/models for example).

Open the environment variable settings screen

  1. Search in the Start menu
    環境変数システム環境変数 or enter
    → Click Edit Environment Variable or Edit System Environment Variable
  2. When the System Properties screen opens,
    → At the bottom, click Environment Variable (N)…” Click

Add to User Environment Variables

  1. In the “User environment variable” column at the top, select “New (N)…” Click
  2. Enter the following: Field Entry
    (e.g., variable nameOLLAMA_MODELS, variable valueC:\models, ← any destination folder)
  3. Click OK to close

It is usually safe to set it to “User Environment Variable”, but if you want, you can set it to a system environment variable (requires administrator privileges).

Example case of setting to a system environment variable:
・I want to share the same model destination with multiple users.
・I want to operate Ollama as a service
・Use Ollama only with administrator privileges

Reboot the relevant system

Command Prompt, PowerShell, Ollama and other related systems will restart

Make sure it’s set up correctly

Commands in PowerShell

$env:OLLAMA_MODELS

Commands at the Command Prompt (cmd.exe)

echo %OLLAMA_MODELS%

If the path you set (e.g., )C:\models is displayed, it is successful.

Notes

  • Any folders C:\models must be created in advance.
  • With this setting, future Ollama models will be saved below this path.

Download the model (AI itself) to use in Ollama

Run any model (auto-download on first time)

ollama run モデル名

How to choose a model

Let’s consider the balance between use, performance, PC specs, and size. I have organized it in an easy-to-understand manner below.

viewpointsubstanceexample
useWhat do you want them to do?Chatting, translating, code generation, image understanding, etc.
Model performanceHow much accuracy and response quality do you want?Focus on inference speed or accuracy
PC PerformanceDo you have enough GPU, RAM, and storage space?If the GPU is less than 8GB, a smaller model is recommended.

Examples of the main models available


Models available in Ollama
https://ollama.com/search
There are many other models available, so choose the one that suits your application and performance.

Model NameExample Execution Commandsize
*Varies depending on the model variant
feature
deepseek-r1ollama run deepseek-r11GB~400GBDeepSeek-R1 is an open inference model with performance close to leading models like O3 and Gemini 2.5 Pro.
gemma3ollama run gemma31GB~17GBGemma is a family of lightweight models offered by Google. The Gemma 3 model is multimodal (text and image processing), has a 128KB context window, and supports more than 140 languages.
qwen3ollama run qwen3500MB~150GBQwen3 is the latest generation of large language models in the Qwen series, providing comprehensive high-density and mixed-expert (MoE) models
devstralollama run devstral14GBDevstral: An Open Source Model for Coding Agents
llama4ollama run llama467GB~245GBMeta’s latest collection of multimodal models.
llama3.3ollama run llama3.343GB70B model. Delivers the same performance as the Llama 3.1 405B model.
llama3.2ollama run llama3.21.3GB~2.0GBIt is miniaturized in 1B and 3B models.
llama3.1ollama run llama3.14.9GB~243GBAvailable in 8B, 70B, and 405B parameter sizes.
llama3ollama run llama34.7GBHigh-Performance, Open-Available LLMs
mistralollama run mistral4GBModels Released by Mistral AI
Lightweight and fast response performance
phi4ollama run phi49.1GBMicrosoft’s lightweight-oriented model
Reference: ollama https://ollama.com/search

Model download and run sample

ollama run llama3

Enter a anime in Send a message and the AI response will appear.

>>> あなたについて日本語で説明してください
私はLLaMAという名前のAIアシスタントです。私はMeta AIによって開発された巨大な言語モデルであり、人間と話すことができま
す。我々の主要な機能は、情報を提供し、質問に回答することです。また、自然発達的な会話にも対応します。

私は膨大なデータセット(インターネット、書籍など)で訓練されました。この訓練により、私は人間のような応答を生成するこ
とができます。我々の能力には以下のようなものがあります。

* 幅広いトピックに関する質問に回答
* 促子やトピックに基づいてテキストを生成
* 語言を翻訳する
* 長文を短縮したサマリーを生成
* 創作のアイデアや提案を提供

私は常に学習し、改善しています。私は完璧ではありませんが、私はお手伝いできるように設計されています!

Continued use

Once you download the model, you can start it faster next time:

ollama run モデル名

You can also check the downloaded models below:

ollama list

List of Main Ollama CLI Commands

commanduseexample
ollamaView a list of available subcommandsollama
ollama --versionCheck the installed versionollama --version
ollama helpGet helpollama help
ollama listView a list of locally saved modelsollama list
ollama pull <モデル名>Download the model (also automatically retrieved on run)ollama pull モデル名
ollama run <モデル名>Model Launch + Interaction Sessionollama run モデル名
ollama psView the list of models (processes) that are being startedollama ps
ollama stop <モデル名>Stop running the specified model (ps after confirming with )ollama stop モデル名
ollama show <モデル名>View model details (quantization format, license, parameters, etc.)ollama show モデル名
ollama rm <モデル名>Remove a model from localollama rm モデル名
ollama cp <元> <コピー名>Copy the model (save it as an alias)ollama cp モデル名 モデル名-copy
ollama create <名前> -f <Modelfile>Create a custom model using a modelfileollama create mymodel -f Modelfile
ollama serveStart the Ollama server. Used when using API integration or RESTollama serve

Benefits for Business Use

itemsubstance
Offline useNo internet connection required, limited to in-house use
securitySecure handling of sensitive information without external transmission
Ease of IntroductionExecution environment can be set up in a few steps and is easy for IT to deploy
Flexible model selectionSwitch between multiple models to optimize for your business needs

Supplementary Information

  • Ollama automatically leverages Docker and WSL2 on the backend, but users don’t need to be aware of it.
  • If you are worried about command operation or want to operate with the Web UI, you can also link with Open WebUI.
Let's share this post !

Author of this article

AIアーティスト | エンジニア | ライター | 最新のAI技術やトレンド、注目のモデル解説、そして実践に役立つ豊富なリソースまで、幅広い内容を記事にしています。フォローしてねヾ(^^)ノ

Comments

To comment

目次